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Abstract
We derive two types of Ward identities for the generating functions for invariant
integrals of monomials of the fundamental characters for arbitrary simple
compact Lie groups. The results are applied to the groups SU(3), Spin(5)

and G2 of rank 2 as well as SU(4).

PACS numbers: 02.20.−a, 02.70.−c, 02.30.Cj, 05.50.+q, 11.15.Ha

1. Introduction

Invariant group integrals are encountered in many problems in physics. Examples are the one-
link integrals in mean field or strong coupling expansions in Euclidian lattice gauge theories
[1] or mass-gap calculations in the Hamiltonian formulation of these theories [2]. They are
used in the exact solution of two-dimensional lattice gauge theories [3], the matching of gauge
theories to chiral models [4] and the loop formulation of quantum gravity on spin network
states [5]; they appear in random matrix theory [6] and its widespread applications in nuclear
physics [7], quantum chaos and transport in mesoscopic devices [8] as well as in quantum
information theory [9]. Apart from that, they are tightly connected to various enumerative
problems in mathematics such as counting the number of invariants in a given tensor product
of group representations or the number of Young tableaux of bounded height [10].

We consider invariant integrals over compact Lie groups with left-right invariant Haar
measure dµHaar. For example, integrals of the form

ZG(j, j †) =
∫

dµHaar(g) exp(tr(j †g) + tr(jg†)) (1)

with a matrix-valued source j can be calculated for the U(N) groups [11]. The solution of the
Schwinger–Dyson equations corresponding to the left and right group actions on the source
yields the closed-form expression in terms of Bessel functions,
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ZU(N)(j, j
†) =

(
2N(N−1)/2

N−1∏
m=0

m!

)
det

(
za−1
b Ia−1(zb)

)
det

((
z2
b

)a−1) , (2)

where (zb/2)2 are the left- and right-invariant eigenvalues of j · j †. For the SU(N) groups
there are further invariants independent of j †, for example det j , and no comparable simple
solution to the Schwinger–Dyson equations are known.

An alternative approach based on an explicit parametrization of the group elements has
been proposed in [12]. Here one ends up with series representations of the form

ZG(j, j †) =
∑

0�n1,...,ns�∞
an1,...,ns

x
n1
1 · · · xns

s , (3)

where x1, . . . , xs are the algebraically independent invariants, xk(gjg′) = xk(j). This method
is only applicable to small groups with sufficiently simple parametrizations. For example, for
SU(2) one obtains the series

ZSU(2) =
∞∑

n=0

1

n!(n + 1)!
(tr(jj †) + det j + det j †)n. (4)

Already for SO(3), the result is a triple series expansion in powers of the three independent
invariants. For SU(3), a convenient parametrization of the group elements leads to the series
[12]

ZSU(3)(j, j
†) =

∑
n1,...,n4

2

(n1 + 2n2 + 3n3 + n4 + 2)! (n2 + 2n3 + n4 + 1)!

4∏
p=1

xnp

np!
(5)

with four left–right invariants

x1 = tr(jj †), x2 = 1
2

(
x2

1 − tr(jj †)2), x3 = det(jj †), x4 = det j + det j †.

(6)

Since x4 is not invariant under U(3) transformations one finds a triple series for this group.
The corresponding results for U(2) and U(3) actually coincide with the expression in terms
of Bessel functions, equation (2) [12].

Numerous results for so-called n-vector integrals containing only n columns of unitary
matrices were derived in [13] and more recently in [14] using an elegant method based solely
on the unitary constraint and left-right invariance of the Haar measure. These methods were
applied to orthogonal groups in [15].

In (1), ZG is a generating function for invariant integrals of arbitrary functions on the
group. In many applications one only needs integrals of class functions. Such functions are
constant on conjugacy classes,

F(ghg−1) = F(h), (7)

such that we can consider them as functions of the maximal Abelian torus in G. By the
Peter–Weyl theorem, the group characters form an orthonormal basis on the Hilbert space
of square integrable class functions. Characters can be computed with the help of Weyl’s
character formula; they are polynomials of the ‘fundamental characters’ χp belonging to the
fundamental representations with highest weights µ(p), p = 1, . . . , r .

One of the authors was involved in the mean field analysis of effective models for pure
gauge theories near their phase transition point [16]. There one is confronted with calculating
invariant integrals of the type

ZG(u) =
∫

dµred(g) exp


 r∑

p=1

upχp(g)


 , (8)
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where dµred is the reduced Haar measure on G. Such invariant integrals together with their
Ward identities also show up in inverse Monte Carlo simulations where one calculates the
couplings in the Polyakov loop dynamics of gauge theories [17]. Other applications are, e.g.,
the computation of glueball masses in Hamiltonian SU(N) lattice gauge theories [2, 18] or
studies of the strong coupling limit of these theories [19]. The function ZG(u) is the generating
function for the moments of all fundamental characters,

∂m1+···+mr

∂u
m1
1 · · · ∂u

mr
r

ZG(u)|u=0 =
∫

dµred(g)χ
m1
1 (g) · · ·χmr

r (g) ≡ tm1,...,mr
(9)

for r-tuples u = (u1, . . . , ur).1

In the literature there seem to be no suitable Ward identities for ZG(u) for arbitrary
groups G. Thus, we decided to publish our findings since they could be useful for colleagues
confronted with similar invariant integrals.

The paper is organized as follows: The next section gives an overview of the known results
for the generating functions ZG(u) for G = U(N) and G = SU(N) and extends those for
SU(N) in the special case of a generating function for the defining representation. In section 3,
we derive what we call geometric Ward identities, since they are based on the invariance of
the Haar measure. These results hold for all compact and simple Lie groups. In section 4,
our method is applied to the simple rank 2 groups SU(3), Spin(5) and G2 and in section 5 to
SU(4). In section 6, an alternative and more analytic method is presented which sheds further
light on the properties of reduced Haar measures. It turns out that the square of the Jacobian
of the transformation ϕ �→ χ from the angles parametrizing the maximal Abelian torus to
the fundamental characters is proportional to the density of the reduced Haar measure. We
have no general proof of this conjecture but have checked it for groups with ranks 2 and 3.
Based on the conjecture we find alternative Ward identities which are applied to the groups
with rank 2. In section 7, we use both types of Ward identities to derive recursion relations
for the moments tm1,...,mr

in (9). The appendices contain a detailed description of the solution
of the Ward identities derived in section 4.1 as well as tables of the lowest moments for the
above rank 2 groups. In the conclusions we comment on possible applications of our Ward
identities.

2. Results for U (N ) and SU (N )

Let z be an arbitrary element of the group centre. By Schur’s lemma it acts on χp(g) by
multiplication with a factor zp such that for the r-vector χ = (χ1, . . . , χr)

t ,

χ′(g) = D(z)χ(g) with D(z) = diag(z1, . . . , zr ). (10)

By invariance of the Haar measure under g �→ zg, this implies the symmetry

ZG(u) = ZG(D−1(z)u) ∀z ∈ centre. (11)

This observation proves to be crucial for explicit computations of ZG in the following sections.
We now briefly summarize the known results for G = U(N) and extend those for SU(N) in
the special case of a generating function for the defining representation.

For U(N) the fact that the reduced Haar measure factorizes into a flat measure times the
absolute square of a Vandermonde determinant det �(ϕ),

dµred(g) = det �(ϕ) det �∗(ϕ) drϕ, (12)

1 Note that for j = u1�, equation (1) yields the generating function for the defining representation of U(N) and its
complex conjugate; however, for N � 3 there is no direct way to derive the generating function ZU(N)(u) for all
fundamental characters from the generating function ZU(N)(j, j

†).
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facilitates the integration such that the generating function

ZU(N)(u, v) =
∫

dµred exp(u tr g + v tr g∗) (13)

for integrals over the characters of the defining representation and its complex conjugate can
be computed explicitly. An integration over the maximal torus parametrized by the angular
variables ϕ1, . . . , ϕN yields the closed expression

ZU(N)(u, v) = det




I0 I1 · · · IN−1

I1 I0 · · · IN−2

...
...

...

IN−1 IN−2 · · · I0


 (2

√
uv). (14)

In accordance with the general result (11), this function is invariant under centre
transformations,

ZU(N)(e
iαu, e−iαv) = ZU(N)(u, v). (15)

It can easily be checked that for v = u∗ this function is the limit of (2) for zb → 4u∗u; this
limit has to be taken with caution since both the numerator and denominator in (2) vanish
for two or more coinciding eigenvalues such that l’Hôpital’s rule and certain Bessel function
identities are needed.

In order to calculate the analogous generating function for SU(N) we follow [20] and
insert the constraint det g = 1 on the maximal Abelian torus in the form

δper(ϕ1 + · · · + ϕN) = 1

2π

∑
n

ein(ϕ1+···+ϕN )

into the invariant integral (13) and find

ZSU(N)(u, v) =
∑
n∈Z

(u

v

)Nn/2
det




In In+1 · · · In+N−1

In−1 In · · · In+N−2

...
...

...

In−N+1 In−N+2 · · · In


 (2

√
uv), (16)

see [18]. The generating function for SU(N) is left-invariant w.r.t. ZN centre transformations
for which

uv → uv,
u

v
→ e4π ik/N u

v
, k = 1, . . . , N. (17)

In the case of SU(2), the sum can be worked out and leads to

ZSU(2)(u, v) = 0F1[2|w2] = I0(4w) − I2(4w), w = u + v

2
. (18)

The case of SU(3) is the subject of section 4.1. We are not aware of similar explicit results
for SU(N) with N � 4. In these cases, the complexity increases since the complex conjugate
fundamental representations are inequivalent.

In (18), the hypergeometric function 0F1 does not appear accidentally; for all SU(N) the
generating function for the defining representation,

ZSU(N)(u) =
∫

dµred(g) exp(u tr g), (19)

is one of the generalized hypergeometric functions

pFq

[
a1, . . . , ap

b1, . . . , bq

∣∣∣∣x
]

=
∞∑

n=0

αn

xn

n!
,

αn+1

αn

= (n + a1) · · · (n + ap)

(n + b1) · · · (n + bq)
, (20)
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with α0 = 1. In the course of the paper, we will mostly identify them as solutions to the
generalized hypergeometric differential equation,{

θ

q∏
i=1

(θ + bi − 1) − x

p∏
i=1

(θ + ai)

}
pFq

[
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x
]

= 0 with θ = x
d

dx
. (21)

For q = 0 (or p = 0), the first (or second) products of differential operators are to be replaced
by the identity operator.

Centre symmetry entails that the function ZSU(N)(u) in (19) is in fact only a function of
x = det(u1) = uN , and ZSU(N)(u) = Z(x) satisfies the differential equation

dN

dxN
(xN−1Z(x)) = Z(x). (22)

The solution is the hypergeometric function 0FN−1[2, 3, . . . , N |x] such that

ZSU(N)(u) = 0FN−1[2, 3, . . . , N |uN ]. (23)

Since for SU(2), trg = trg†, this generalizes the standard result (18) (with u = v) by Arisue
[21]. Equation (23) follows from (16) when v tends to zero so that

ZSU(N)(u) =
∑
n�0

uNn det �(n), (�(n))pq =
{

1
(n+q−p)! for n + q − p � 0,

0 else.
(24)

If we multiply the pth row of �(n) with (n + N − p)!, it is easy to calculate the determinants
of these Toeplitz matrices,

det �(n) =
N−1∏
p=0

p!

(n + p)!

⇒ det �(n+1)

det �(n)
= 1

(n + 1) · · · (n + N)
. (25)

This proves equation (23).

3. Ward identities for generating functions

We denote the left derivative in the direction of the Lie algebra element Ta by La , i.e.
Laf (g) = d

dt

∣∣
t=0f (exp(itTa)g) for some function f on G. The Haar measure is left- (and

right-) invariant, thus∫
dµHaar(g)(Laf )(g) = 0, f ∈ L2(G). (26)

For class functions F and F̃ the function∑
a

La(F · LaF̃ ) ≡ L(FLF̃ ) = FL2F̃ + LF · LF̃ (27)

is a class function as well. In order to see this, we may assume that F and F̃ are basis
elements (i.e., characters χµ and χν of some representations with highest weights µ, ν). In∑

a

(
χµ · L2

aχν + Laχµ · Laχν

)
, the first part of the sum is a class function since the quadratic

Casimir operator
∑

a T 2
a commutes with all group elements, and the second part is a class

function since invariance of the Killing metric trTaTb under adjoint action by some group
element h implies that hTah

−1 can be expanded as Ra
cTc with an orthogonal matrix R.

Thus, (26) with f = F · LaF̃ reduces to an integral over the maximal Abelian torus,

0 =
∫

dµredL(FLF̃ ) =
∫

dµred(FL2F̃ + LF · LF̃ ). (28)
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We take F̃ to be a fundamental character χp with p ∈ {1, . . . , r}. The χ1, . . . , χr are good
coordinates for the maximal torus such that any class function can be thought of as a function
of these characters, F = F(χ1, . . . , χr). Then the identity (28) reads

0 =
∫

dµred

(
F(χ)L2χp +

∑
q

(Lχp)
∂F (χ)

∂χq

(Lχq)

)
. (29)

Every character χµ of a representation Vµ with highest weight µ is an eigenfunction of the
Laplacian L2 with eigenvalue −cµ, where cµ is the value of the quadratic Casimir in Vµ,

L2χµ = −cµχµ. (30)

To calculate the last term in (29) we decompose the tensor product of Vµ ⊗Vν into irreducible
pieces2,

Vµ ⊗ Vν =
⊕

λ

Cλ
µνVλ, such that χµχν =

∑
Cλ

µνχλ. (31)

Acting with L2 on this relation and using (30) we find the useful relation

(Lχµ) · (Lχν) = 1

2
(cµ + cν)χµχν − 1

2

∑
λ

Cλ
µνcλχλ, (32)

with Clebsch–Gordan coefficients Cλ
µν and second-order Casimirs cµ. Now we may rewrite

the Ward identity (29) as follows:

cp

∫
dµredχpF(χ) = 1

2

r∑
q=1

(cp + cq)

∫
dµredχpχq

∂F (χ)

∂χq

− 1

2

∑
q,λ

Cλ
pqcλ

∫
dµredχλ

∂F (χ)

∂χq

, 1 � p � r. (33)

We choose the class function F = exp(u · χ) such that∫
dµredF = ZG(u),

∂F

∂χq

= uqF and
∂F

∂uq

= χqF. (34)

Then, the identity (33) translates into the following master equation for ZG:

cp

∂

∂up

ZG(u) = 1

2

∑
q

(cp + cq)uq

∂2

∂uq∂up

ZG(u)

− 1

2

∑
q,λ

Cλ
pqcλuqχλ

(
∂
)
ZG(u), p = 1, . . . , r, (35)

where χλ(∂) is the differential operator obtained by formally evaluating the polynomial χλ(χ)

at (∂/∂u1, . . . , ∂/∂ur). The properties of the group G enter these Ward identities at three
places: via the polynomials χλ(χ), the values cµ of the quadratic Casimir operators and the
Clebsch–Gordan coefficients Cλ

pq . The coefficient functions of these linear partial differential
equations are constant or linear functions of the variables u1, . . . , ur . Their complexity
depends crucially on the polynomials χλ. For SU(3) and Spin(5) all χλ are quadratic, and
one ends up with second-order differential equations.

2 The characters χλ are polynomials χλ = χλ(χ1, . . . , χr ) of the fundamental characters. For groups of higher rank
it can be cumbersome to calculate these polynomials.
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For explicit calculations, we have to fix our Lie algebra conventions which were chosen
to allow for an easy comparison with the computer algebra program LiE [22]. In these
conventions, the Cartan matrix is given by

Kpq = 2(α(p), α(q))

(α(q), α(q))
(36)

in terms of the simple roots α(1), . . . , α(r). Thus, simple roots and fundamental weights are
connected by the relation

α(p) =
∑

q

Kpqµ(q). (37)

The shortest simple root has squared length 2. In particular, for simply laced groups, the Cartan
matrix reduces to Kpq = (α(p), α(q)). Arbitrary roots and weights are linear combinations of
the simple roots and fundamental weights, respectively,

α =
∑

mpα(p) ≡ [m1, . . . , mr ] and µ =
∑

npµ(p) ≡ [n1, . . . , nr ]. (38)

The Weyl vector

ρ = 1

2

∑
α>0

α =
r∑

p=1

µ(p) (39)

plays an important role in the theory of representations; we will mostly need it for its appearance
in the formula for the value of the second-order Casimir operator in a representation Vµ,

cµ = (µ,µ + 2ρ). (40)

With the help of (37) and (α(p), µ(q)) = δpqvp the Casimir of the representation with highest
weight µ = [n1, . . . , nr ] can be written as

cµ = (n,K−1n′) with n′
p = vp(np + 2). (41)

For simply laced groups all vp are equal to 1 so that n′
p = np + 2.

4. Ward identities for groups of rank 2

In this section, we are going to investigate and exploit the geometric Ward identities (35)
for the groups SU(3), Spin(5) and G2. For these rank 2 groups, the generating function (8)
depends on two variables u1 ≡ u and u2 ≡ v.

4.1. The group SU(3)

As a simply laced group SU(3) has a symmetric Cartan matrix,

KSU(3) =
(

2 −1
−1 2

)
, (42)

and the quadratic Casimir of the representation with highest weight µ = [n1, n2] is

cµ = 2
3

(
n2

1 + n2
2 + n1n2 + 3n1 + 3n2

)
. (43)

The fundamental three-dimensional representation 3 ≡ [1, 0] and its complex conjugate
3̄ ≡ [0, 1] both have Casimir 8/3. Since

3 ⊗ 3 = 6 ⊕ 3̄, 3̄ ⊗ 3̄ = 6̄ ⊕ 3, 3 ⊗ 3̄ = 1 ⊕ 8, (44)

the λ-sum in (35) contains both fundamental, two sextet and the octet representations. The
singlet representation has vanishing Casimir invariant and does not contribute. The Casimir
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operator on the sextets 6 = [2, 0] and 6̄ = [0, 2] takes the value 20/3, and the octet 8 = [1, 1]
has Casimir 6. To derive explicit Ward identities we must express the characters of the
representations 6, 6̄ and 8 in terms of the fundamental characters. By (31), equation (44)
yields

χ6 = χ2
3 − χ3̄, χ6̄ = χ2

3̄ − χ3, χ8 = χ3χ3̄ − 1. (45)

Thus, the differential operators χλ(χ) in the Ward identity (35) read

χ3 = ∂u, χ3̄ = ∂v, χ6 = ∂2
u − ∂v, χ6̄ = ∂2

v − ∂u, χ8 = ∂u∂v − 1, (46)

and the two Ward identities in (35) for the generating function

ZSU(3)(u, v) =
∫

dµred(g) exp(uχ3(g) + vχ3̄(g)) with χ3(g) = tr g (47)

have the simple form3

(
2u∂2

u + v∂u∂v + 8∂u − 6u∂v − 9v
)
ZSU(3) = 0, (48)(

2v∂2
v + u∂v∂u + 8∂v − 6v∂u − 9u

)
ZSU(3) = 0. (49)

Note that by the property dµ(g) = dµ(g−1) of the Haar measure, ZSU(3)(u, v) = ZSU(3)(v, u)

is a symmetric function. Thus it is sufficient to study one of the two identities. In the defining
representation of SU(3), the centre Z3 acts by multiplication with exp(2π i/3)1, and the
symmetry (11) reads

ZSU(3)(e
2π i/3u, e−2π i/3v) = ZSU(3)(u, v). (50)

Together with the symmetry in its two arguments this suggests that ZSU(3) is just a function of
the combinations u3 + v3 and uv. In fact, we prove in the appendices that the solution to (48)
is given by

ZSU(3)(u, v) =
∞∑

p,q=0

2

(p + q + 1)!(p + q + 2)!q!

(
3(p + q + 1)

p

)
(uv)p(u3 + v3)q . (51)

We have found only one comparably simple series representation for the generating function in
the literature [18]. To arrive at their result the authors took the quartic series (5) and calculated
two of the four infinite sums. It seems evident that our method based on geometric Ward
identities is more efficient to find simple series representation for generating functions.

As two special cases, we will restrict ZSU(3)(u, v) to the u-axis (i.e., v = 0) and the
diagonal (i.e., u = v). Instead of performing a resummation of the general result (51), we
derive differential equations for ZSU(3) in these cases. First we solve the Ward identities
(48, 49) on the u-axis, where(
2u∂2

u + 8∂uZ − 6u∂v

)
ZSU(3)

∣∣
v=0 = 0, (u∂v∂u + 8∂v − 9u)ZSU(3)|v=0 = 0. (52)

To get rid of the v-derivatives at v = 0 we act with u∂u on the first equation and use (52) to
eliminate the terms ∂vZSU(3) and ∂u∂vZSU(3). We find the ordinary differential equation(

u2∂3
u + 12u∂2

u + 28∂u − 27u2
)
ZSU(3)(u, 0) = 0. (53)

Since ZSU(3)(u, 0) only depends on u3 we may equally well use x = u3 as a new variable,
ZSU(3)(u, 0) = YSU(3)(x). Then the differential equation takes the simpler form(

x2∂3
x + 6x∂2

x + 6∂x − 1
)
YSU(3) = (x2YSU(3))

′′′ − YSU(3) = 0, (54)

3 The action of left derivatives on characters can also be worked out concretely in a matrix representation although
this requires more computational effort, cf [23].
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which has a solution in terms of a generalized hypergeometric function (cf (22)), YSU(3)(x) =
0F2[2, 3|x]. This is just the result (23) for the group SU(3).

In order to find a differential equation on the diagonal u = v, we act by the operator
(3u∂u + 5u∂v + 5 + 4u) on (48) and evaluate the result at u = v =: t . In terms of

d

dt
ZSU(3)(t, t) = (∂u + ∂v)ZSU(3),

d2

dt2
ZSU(3)(t, t) = (2∂uu + 2∂vv)ZSU(3),

d3

dt3
ZSU(3)(t, t) = (2∂uuu + 6∂uuv)ZSU(3),

(55)

the resulting ordinary differential equation reads(
t2 d3

dt3
+ t (10 − t)

d2

dt2
− 2(12t2 + t − 10)

d

dt
− 12t (3t + 5)

)
ZSU(3) = 0. (56)

This is solved by a function

ZSU(3)(t, t) = 1 + t2 +
∞∑

n=3

an

n!
tn (57)

where the coefficients an satisfy the recursion relation

an+1 = 1

(n + 4)(n + 5)
(n(n + 1)an − 12n(2n + 3)an−1 − 36n(n − 1)an−2) = 0. (58)

Together with a0 = 1, a1 = 0, and a2 = 2, this determines all coefficients in the expansion
(58).

4.2. The group Spin(5)

Since Spin(5) is not simply laced, the Cartan matrix

KSpin(5) =
(

2 −2
−1 2

)
(59)

is not symmetric. With the convention in (36), we take α1 to be the longer root, α2
1 = 4 and

α2
2 = 2. The eigenvalue of the Casimir operator of the representation with highest weight

µ = [n1, n2] reads

cµ = 2n2
1 + n2

2 + 2n1n2 + 6n1 + 4n2. (60)

The fundamental representations are the SO(5) vector representation 5 = [1, 0] and the spin
representation 4 = [0, 1]. The centre Z2 is generated by −1 in the spin representation and
acts trivially in the vector representation; the centre symmetry (11) implies that

ZSpin(5)(u, v) =
∫

dµred(g) exp(uχ5(g) + vχ4(g)) = ZSpin(5)(u,−v) (61)

is an even function in v. For the geometric Ward identities we need the tensor products

5 ⊗ 5 = 1 ⊕ 10 ⊕ 14, 4 ⊗ 4 = 1 ⊕ 5 ⊕ 10, 5 ⊗ 4 = 4 ⊕ 16. (62)

With 10 = [0, 2], 14 = [2, 0] and 16 = [1, 1], we obtain for the Casimir operators (41)

c5 = 8, c4 = 5, c10 = 12, c14 = 20, c16 = 15. (63)

Together with (62), (31) implies that

χ10 = χ2
4 − χ5 − 1, χ14 = χ2

5 − χ2
4 + χ5, χ16 = χ5χ4 − χ4, (64)
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which leads to the Ward identities(
u
(
4∂2

v − 2∂2
u − 4∂u + 6

)
+ v(5∂v − ∂u∂v) − 8∂u

)
ZSpin(5)(u, v) = 0, (65)(

u(5∂v − ∂u∂v) + v
(
2∂u − ∂2

v + 6
) − 5∂v

)
ZSpin(5)(u, v) = 0. (66)

Since the centre of Spin(5) is smaller than the centre of SU(3) these differential equations are
more complicated than the corresponding SU(3) equations in (48) and (49). The characteristics
of the second (generally hyperbolic) equation are given by u = const and u

v
= const,

respectively. These families of lines coincide for u = 0 (where (66) is parabolic), and
we may solve the characteristic problem given a solution of both equations for u = 0.

The restriction of the Ward identities to the v-axis

(8∂u − v(5∂v − ∂u∂v))ZSpin(5)|u=0 = 0,
(
5∂v − v

(
2∂u − ∂2

v + 6
))

ZSpin(5)

∣∣
u=0 = 0 (67)

can be solved if we differentiate the second equation with respect to v and use the two relations
(67) to eliminate the u-derivatives at u = 0. We find the following ordinary differential
equation for ZSpin(5)(0, v):(

v2∂3
v + 13v∂2

v − 16v2∂v + 35∂v − 48v
)
ZSpin(5)(0, v) = 0. (68)

Since ZSpin(5) is an even function in v we set ZSpin(5)(0, v) = Z0(x = v2) and obtain the simple
equation (

x2∂3
x + 8x∂2

x − 4x∂x + 12∂x − 6
)
Z0(x) = 0. (69)

The solution is a hypergeometric function 1F2
[ 3/2

3,4

∣∣4x
]

so that

ZSpin(5)(0, v) =
∫

dµred(g) exp
(
vχ4(g)

) = 1F2
[ 3/2

3,4

∣∣4v2
]
. (70)

Plugging this into the second Ward identity (66) we obtain a recursive solution

ZSpin(5)(u, v) =
∞∑

n=0

Zn(x = v2)

n!
un, (71)

where

Z1(x) = (
6∂x + 2x∂2

x − 3
)
Z0(x),

Zn(x) = [
(5 + n)∂x + 2x∂2

x − 3
]
Zn−1(x) − 5(n − 1)∂xZn−2(x) for n � 2.

(72)

As a special case, let us consider the Spin(5)-Ward identities on the u-axis,(
u
(
2∂2

v − ∂2
u − 2∂u + 3

) − 4∂u

)
ZSpin(5)

∣∣
v=0 = 0,

(
u(5∂v − ∂u∂v) − 5∂v

)
ZSpin(5)

∣∣
v=0 = 0.

(73)

We differentiate the first equation with respect to u and obtain(
2∂2

v − 5∂2
u − 2∂u + 3 + u

(
2∂u∂

2
v − ∂3

u − 2∂2
u + 3∂u

))
ZSpin(5)

∣∣
v=0 = 0. (74)

Equation (73) together with the v-derivative of (66) at v = 0 can be used to eliminate the
v-derivatives,(
u2∂3

u + (10u − 3u2)∂2
u + (20 − 12u − 13u2)∂u − 30u + 15u2

)
ZSpin(5)(u, 0) = 0. (75)

Very probably this cannot be converted into a differential equation for a generalized
hypergeometric series. The differential equation is solved by the power series

ZSpin(5)(u, 0) = 1 + u2 +
∞∑

n=3

bn

n!
un (76)
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provided that the coefficients satisfy the recursion relation

bn+1 = 1

(n + 4)(n + 5)
(3n(n + 3)bn + n(13n + 17)bn−1 − 15n(n − 1)bn−2), n � 2.

(77)

Together with b0 = 1, b1 = 0 and b2 = 2, this determines all coefficients in the expansion
(76).

4.3. The group G2

For this group, the Cartan matrix is

KG2 =
(

2 −1
−3 2

)
. (78)

Hence, α1 is a short root and α2 a long root, α2
1 = 2 and α2

2 = 6. The quadratic Casimir of the
representation with highest weight µ = [n1, n2] reads

cµ = 2n2
1 + 6n2

2 + 6n1n2 + 10n1 + 18n2. (79)

The first fundamental representation 7 = [1, 0] coincides with the subrepresentation of the
eight-dimensional spinor representation of Spin(7) leaving an arbitrary spinor fixed, and the
second is just the adjoint representation 14 = [0, 1]. The centre of G2 is trivial and we expect
no symmetries of the generating function.

For the Ward identity we need the tensor products

7 ⊗ 7 = 1 ⊕ 7 ⊕ 14 ⊕ 27,

7 ⊗ 14 = 7 ⊕ 27 ⊕ 64,

14 ⊗ 14 = 1 ⊕ 14 ⊕ 27 ⊕ 77 ⊕ 77′,

7 ⊗ 27 = 7 ⊕ 14 ⊕ 27 ⊕ 64 ⊕ 77′.

(80)

We need the last product in order to express the characters χλ as functions of the fundamental
characters. Note that two irreducible representations of dimension 77 appear in the
decompositions. We identify 27 = [2, 0], 64 = [1, 1], 77 = [0, 2] and 77′ = [3, 0] so
that the quadratic Casimir operators (41) take the following values:

c7 = 12, c14 = 24, c27 = 28, c64 = 42, c77 = 60, c77′ = 48. (81)

Furthermore, we use

χ27 = χ2
7 − χ7 − χ14 − 1,

χ64 = χ7χ14 − χ2
7 + χ14 + 1,

χ77 = −χ3
7 + χ2

14 + 2χ7χ14 + 2χ7 + χ14,

χ77′ = χ3
7 − χ2

7 − 2χ7χ14 − χ7 − χ14

(82)

to derive the following G2-Ward identities

0 = (
u
( − 2∂2

u + 8∂u + 2∂v + 14
)

+ v
(
7∂2

u − 3∂u∂v + 8∂u − 7∂v − 7
) − 12∂u

)
ZG2(u, v), (83)

0 = (
u
(
7∂2

u − 3∂u∂v + 8∂u − 7∂v − 7
)

+ v
(
6∂3

u + 10∂2
u − 6∂2

v − 12∂u∂v − 22∂u − 4∂v + 14
) − 24∂v

)
ZG2(u, v) (84)

for the generating function

ZG2(u, v) =
∫

dµred(g) exp(uχ7(g) + vχ14(g)). (85)
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On the u-axis these equations simplify to

0 = (
u
(−∂2

u + 4∂u + ∂v + 7
) − 6∂u

)
ZG2(u, v)|v=0, (86)

0 = (
u
(
7∂2

u − 3∂u∂v + 8∂u − 7∂v − 7
) − 24∂v

)
ZG2(u, v)|v=0. (87)

We solve the first equation and its u-derivative for the v-derivatives at v = 0 occurring in the
second equation and end up with the third-order differential equation(
u2∂3

u + (14u − 4u2)∂2
u + (42 − 18u − 19u2)∂u − 14u2 − 56u

)
ZG2(u, 0) = 0. (88)

Again this is probably not related to a generalized hypergeometric series. It may be solved in
terms of a series expansion

ZG2(u, 0) = 1 + u2 +
∑
n�3

gn

n!
un (89)

provided that the coefficients satisfy the recursion relation (for n � 2)

gn+1 = 1

(n + 6)(n + 7)
(2n(2n + 7)gn + n(19n + 37)gn−1 + 14n(n − 1)gn−2), (90)

together with g0 = 1, g1 = 0, g2 = 2. These coefficients are related to the triangulations of
n-gones with inner vertices with valences � 6 [24].

Starting from ZG2(u, 0) = Z̃0(u), we can now solve the corresponding characteristic
problem for the first Ward identity (83) (analogously to the Ward identity for Spin(5)) by
means of an expansion

ZG2(u, v) =
∞∑

n=0

Z̃n(u)vn (91)

with

uZ̃1(u) = (
u∂2

u − 4u∂u + 6∂u − 7u
)
Z̃0(u),

2uZ̃n(u) = (1 − n)
(
7∂2

u + 8∂u − 7
)
Z̃n−2(u)

+
(
2u∂2

u − 8u∂u + 3(n + 3)∂u − 14u + 7n − 7
)
Z̃n−1(u) (92)

for all n � 2. With the help of (90) and (92), one can reproduce the moments given in
appendix B recursively.

5. Results for SU (4)

In this section, we will derive a solution to the Ward identities of the rank 3 group SU(4) in a
certain range of the parameter values. For SU(4), the quadratic Casimir of the representation
with highest weight µ = [n1, n2, n3] is given by

cµ = 1
4

(
3n2

1 + 4n2
2 + 3n3

3 + 4n1n2 + 2n1n3 + 4n2n3
)

+ 3n1 + 4n2 + 3n3, (93)

and the fundamental representations 4, 6, 4̄ with highest weights µ1 ≡ [1, 0, 0], µ2 ≡ [0, 1, 0]
and µ3 ≡ [0, 0, 1] have Casimirs

c4 = c4̄ = 15
4 and c6 = 5. (94)

The real representation 6 coincides with the vector representation of SO(6), and 4̄ is complex
conjugated to the defining representation 4; the latter two can be identified with the complex
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fundamental spinor representations of Spin(6). Their tensor products can be decomposed
according to

4 ⊗ 4 = 6 ⊕ 10, 6 ⊗ 6 = 1 ⊕ 20 ⊕ 15, 4̄ ⊗ 4̄ = 6 ⊕ 10,

4 ⊗ 4̄ = 1 ⊕ 15, 4 ⊗ 6 = 4̄ ⊕ 20′, 4̄ ⊗ 6 = 4 ⊕ 20
′
,

(95)

where again we denoted the representations by their dimensions,

10 = [2, 0, 0], 10 = [0, 0, 2], 15 = [1, 0, 1], 20 = [0, 2, 0],

20′ = [1, 1, 0], 20
′ = [0, 1, 1].

The representations 15 and 20 are real and 4̄, 20
′
are complex conjugate to 4, 20′. From (95),

we find

χ10 = χ2
4 − χ6, χ15 = χ4χ̄4 − 1, χ20 = χ2

6 − χ4χ̄4, χ20′ = χ4χ6 − χ̄4.

These data enter the Ward identities (35) for the generating function

ZSU(4)(u, v,w) =
∫

dµred euχ4+vχ̄4+wχ6 , (96)

which is centre symmetric, ZSU(4)(iu,−iv,−w) = ZSU(4)(u, v,w). They take the form

0 = {
15∂u + u

(
3∂2

u − 8∂w

)
+ 2w(∂u∂w − 6∂v) + v(∂u∂v − 16)

}
ZSU(4)(u, v,w), (97)

0 = {
10∂w + u(∂u∂w − 6∂v) + 2w

(
∂2
w − 2∂u∂v − 4

)
+ v(∂v∂w − 6∂u)

}
ZSU(4)(u, v,w), (98)

0 = {
15∂v + v

(
3∂2

v − 8∂w

)
+ 2w(∂v∂w − 6∂u) + u(∂u∂v − 16)

}
ZSU(4)(u, v,w). (99)

In order to find an explicit solution for arbitrary products of four-dimensional representations
(i.e., on the diagonal with u = v and w = 0), we proceed analogously to section 4.1: we act
with the operator (u∂u + v∂v + 9) on the first and last equations and use (98) to eliminate the
w-derivative in the resulting differential equations. At w = 0, we obtain(
3u2∂3

u + 4uv∂2
u∂v + v2∂u∂

2
v + 45u∂2

u + 25v∂u∂v

)
ZSU(4)(u, v, 0)

+ ((135 − 64uv)∂u − (16v2 + 48u2)∂v − 160v)ZSU(4)(u, v, 0) = 0,(
3v2∂3

v + 4uv∂u∂
2
v + u2∂2

u∂v + 45v∂2
v + 25u∂u∂v

)
ZSU(4)(u, v, 0)

+ ((135 − 64uv)∂v − (16u2 + 48v2)∂u − 160u)ZSU(4)(u, v, 0) = 0. (100)

Acting with the operator (u∂u + 2u∂v + 7) on the first equation in (100) and evaluating the
result at u = v = t and w = 0, we obtain the following differential equation for Z(t, t, 0):(

t3 d4

dt4
+ 24t2 d3

dt3
+ (165 − 64t2)t

d2

dt2
+ 9(35 − 64t2)

d

dt
− 960t

)
ZSU(4) = 0, (101)

where the derivatives with respect to t are given by expressions analogous to (55). Restricting
ZSU(4) to the diagonal breaks the Z4 centre symmetry down to Z2; we identify (101) in terms
of the Z2-invariant coordinate y = 16t2,(

y4∂4
y + 15y3∂3

y + (60y2 − y3)∂2
y + (60y − 5y2)∂y − 15

4 y
)
ZSU(4) = 0, (102)

as the defining equation (21) for the hypergeometric function

ZSU(4)(t, t, 0) =
∫

dµred(g) exp(t (tr g + tr g†)) = 2F3

[
3/2, 5/2

3, 4, 5

∣∣∣∣ 16t2

]
. (103)
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This result proves the conjecture in [18] (which is based on numerical observations). As a
by-product, this also leads to the remarkable identity

∑
n∈Z

det




In In+1 In+2 In+3

In−1 In In+1 In+2

In−2 In−1 In In+1

In−3 In−2 In−1 In


 (2t) = 2F3

[
3/2, 5/2

3, 4, 5

∣∣∣∣ 16t2

]
, (104)

cf equation (16) for u = v = t , relating generalized hypergeometric functions and determinants
of Bessel functions.

6. On the reduced Haar measure

In this section, we will describe an alternative approach to Ward identities for the generating
function ZG based on a factorization of the reduced Haar measure on the maximal Abelian
torus in G. Tangent vectors to this torus are linear combinations Hϕ = ∑

p ϕpHp of the Cartan
generators Hp. The reduced Haar measure dµred = ρreddrϕ on the maximal Abelian torus has
the product representation [25]

ρred(e
iHϕ ) ∝

∏
α>0

4 sin2

(
1

2
α(Hϕ)

)
=

∏
m∈�+

4 sin2

(
1

2
(m,Kϕ)

)
(105)

with one factor for every positive root α. The 1
2

(
dim(G) − rank(G)

)
positive roots are linear

combination of the simple roots,

α = m1α(1) + m2α(2) + · · · + mrα(r), mi ∈ N0, (106)

and the range �+ for m = (m1, . . . , mr)
t in (105) is chosen in such a way that it parametrizes

all positive roots. We may take the square root of the density [25],

ρred(e
iHϕ ) ∝ |�|2, � =

∏
m∈�+

2i sin

(
1

2
(m,Kϕ)

)
=

∑
w∈W

sign(w) eiw(ρ)(Hϕ), (107)

where the sum runs over the Weyl orbit W of the Weyl vector ρ introduced in (39). Since
the Weyl orbit of ρ contains |W | elements the product representation is preferable for large
groups4. But it is evident from the sum representation that � changes sign under Weyl
reflections.

The density ρred ∝ ��̄ of the reduced Haar measure is a Weyl-invariant function on
the maximal Abelian torus and hence a function of the fundamental characters. From (105)
we see that it actually is a polynomial of the fundamental characters. In contrast, � is not
Weyl-invariant and hence cannot be written as function of the characters.

Less obvious is the observation that � is related to the Jacobian of the transformation
ϕ �→ χ(ϕ) from the angular variables to the fundamental characters,

J (χ) ≡ ∣∣ det

(
∂χ

∂ϕ

) ∣∣ ∝ |�|, such that dµred = J 2 drϕ = J (χ) drχ. (108)

This mapping is one-to-one on the fundamental domain F of the action of the Weyl group on
the maximal Abelian torus. This is the closed connected region containing χ = 0 in which
� � 0. We have no proof of the conjecture (108) for all compact simple groups, but have
checked it for the groups SU(3), Spin(5) and G2 considered in the following sections as well
as for SU(2) and SU(4).

4 For example for SU(N) the sum has N ! terms, whereas the product has only 1
2 N(N − 1) factors.
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Based on this conjecture we may derive alternative Ward identities from∫
F

drχ
∂

∂χp

(J 3(χ)F (χ)) = 0, (109)

where use was made of the fact that the Jacobian vanishes on the boundary of the fundamental
domain. This leads to the general and simple looking Ward identities

0 =
∫
F

dµred

(
3

2

∂J 2

∂χp

F + J 2 ∂F

∂χp

)
, p = 1, . . . , r (110)

for any regular function F = F(χ) on the fundamental domain. In particular, they imply the
following differential identities for the generating function ZG(u):(

3

2

∂J 2

∂χp

(∂) + upJ 2(∂)

)
ZG(u) = 0, p = 1, . . . , r. (111)

These should be compared with the geometric Ward identities (35). In [17] by one of the
authors, both types of identities were applied to calculate effective Polyakov loop dynamics of
SU(3) Yang–Mills theories on the lattice. The geometric Ward identities are usually simpler
but not necessarily favoured in computer simulations.

Ultimately, the two systems of linear partial differential equations (111) and (35) must be
equivalent; but a proof is not straightforward at all. For example, for SU(3) equations (111)
are fourth-order differential equation whereas (35) are of second order.

Now we apply the general result (111) to all simple compact simply connected groups of
rank 2. As mentioned above, for these group the conjecture that the density of the reduced
Haar measure is proportional to the square of the Jacobian J of the transformation ϕ �→ χ
can be checked explicitly. The Jacobians for the three groups are computed in the following
subsections.

6.1. The group SU(3)

As in section 4.1, [1, 0] denotes the defining representation 3 and [0, 1] its complex conjugate
3̄. The reduced Haar measure reads

dµred = 1

6π2
J 2 dϕdϕ2 = 1

6π2
J (χ) dχ3 dχ3̄, (112)

with J 2 ∝ ρred from (105). As a function of the fundamental characters the Weyl-invariant
and centre-symmetric J 2 reads

J 2 = 27 + χ3
3 + χ3

3̄ − 1
4 (9 + χ3χ3̄)

2. (113)

It can be easily verified that its positive square root J indeed coincides with the Jacobian of
the map (ϕ1, ϕ2) �→ (χ3, χ3̄).

The Jacobian vanishes for

y2 = −(9 + 12x + x2) ± 2(2x + 3)3/2,

where x = Re(χ3) and y = Im(χ3) are the real and imaginary parts of χ3 (see figure 1).
The fundamental domain inside the triangularly shaped region is symmetric under Z3

centre transformations which rotate χ3 by multiples of e2π i/3. Its corners are the values
of (Reχ3, Imχ3) at the centre elements. Here, the identities (111) for the generating function
take the form

0 = (
3
(
6∂2

u − 9∂v − ∂u∂
2
v

)
+ u

(
27 + 4∂3

u + 4∂3
v − 18∂u∂v − ∂2

u∂2
v

))
ZSU(3), (114)

0 = (
3
(
6∂2

v − 9∂u − ∂v∂
2
u

)
+ v

(
27 + 4∂3

u + 4∂3
v − 18∂u∂v − ∂2

u∂2
v

))
ZSU(3). (115)

In contrast to the geometric identities (48), (49) these are fourth-order differential equations.
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χ3

χ3

χ3( )

Im

Re

Figure 1. Fundamental domain for SU(3).

χ5

χ4

χ( )

(−3,0)

χ(z)

Figure 2. Fundamental domain for Spin(5).

6.2. The group Spin(5)

With the conventions used in section 4.2, [1, 0] = 5 is the defining representation and [0, 1] = 4
denotes the spin representation. The reduced Haar measure reads

dµred ∝ J 2 dϕ1 dϕ2 = Jdχ5 dχ4 (116)

with Jacobian J such that

J 2 = (3 + χ5 − 2χ4)(3 + χ5 + 2χ4)
(
4 − 4χ5 + χ2

4

)
. (117)

The zero locus of the Jacobian is given by

2y = ±(x + 3), y = ±√
x − 1,

where we abbreviated x = χ5 and y = χ4 (see figure 2). The fundamental domain inside
the triangularly shaped region is invariant under the Z2 centre symmetry flipping the sign of
χ4. Two of the corners, (χ5(1), χ4(1)) = (5, 4) and (χ5(z), χ4(z)) = (5,−4), respectively,
are located at the values of the characters at the centre elements. The identities (111) for the
generating function take the form

0 = (
u
(
(3 + ∂u)

2 − 4∂2
v

)(
4 − 4∂u + ∂2

v

)
+ 3

(
∂u∂

2
v − 6∂2

u + 11∂2
v − 20∂u − 6

))
ZSpin(5), (118)

0 = (
v
(
(3 + ∂u)

2 − 4∂2
v

)(
4 − 4∂u + ∂2

v

)
+ 3

(
∂2
u∂v − 8∂3

v + 22∂u∂v − 7∂v

))
ZSpin(5). (119)

Again, these are fourth-order differential equations.
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χ5

χ14

(−1,−2)

χ( )

(−2,5)

Figure 3. Fundamental domain for G2.

6.3. The group G2

With the conventions of section 4.3, 7 = [1, 0] denotes the seven-dimensional representation
and 14 = [0, 1] the adjoint representation. The density J 2 of the reduced Haar measure

dµred ∝ J 2 dϕ1 dϕ2 = Jdχ5 dχ4 (120)

is a quintic polynomial in χ7 and a cubic polynomial in χ14,

J 2 = (
4χ3

7 − χ2
7 − 2χ7 − 10χ7χ14 + 7 − 10χ14 − χ2

14

)(
7 − χ2

7 − 2χ7 + 4χ14
)
. (121)

Since the centre of G2 is trivial, this polynomial shows no symmetries at all. Nevertheless, it
is possible to characterize the fundamental domain for the exceptional group G2 explicitly.

The zero locus of the Jacobian is given by

y = 1
4 (x + 1)2 − 2, y = −5(x + 1) ± 2(x + 2)3/2,

where we introduced x = χ7 and y = χ14 (see figure 3). The fundamental domain is the
region bounded by the three curves defined by the above equations. The upper right corner
is located at the characters of the unit element, (χ7, χ14) = (7, 14). In this case, the identity
(111) for the generating function reads

0 = (
u
(
4∂3

u − ∂2
u − 2∂u − 10∂u∂v + 7 − 10∂v − ∂2

v

)(
7 − ∂2

u − 2∂u + 4∂v

)
+ 3

(
3 − 29∂u + 13∂3

u + 13∂2
u − 38∂u∂v − 21 − 47∂v + ∂2

u∂v − 6∂2
v

))
ZG2 , (122)

0 = (
v
(
4∂3

u − ∂2
u − 2∂u − 10∂u∂v + 7 − 10∂v − ∂2

v

)(
7 − ∂2

u − 2∂u + 4∂v

)
+

(
3 − 29∂u + 13∂3

u + 13∂2
u − 38∂u∂v − 21 − 47∂v + ∂2

u∂v − 6∂2
v

))
ZG2 . (123)

Since J 2 is quintic we arrive at complicated fifth-order linear partial differential equations
which should be compared with the equivalent geometric Ward identities (83), (84).

7. Recursion relations for the moments

The function ZG(u) generates the moments

tm1,...,mr
=

∫
dµredχ

m1
1 · · ·χmr

r (124)
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by multiple differentiation at u = 0, see (9). Due to centre symmetry of the Haar measure
only centre-symmetric moments are nonzero, and this selection rule must be respected by any
recursion relation for the moments.

One may use the Ward identity for ZG(u) to find such relations. A more direct derivation
takes advantage of (33) with F = χ

m1
1 · · · χmr

r . One finds

0 =
(

2cp −
∑

q

(cp + cq)mq

)
tm1,...,mp+1,...,mr

+
∑
λ,q

Cλ
pqcλmq

∫
dµredχλ(χ)χ

m1
1 · · ·χmq−1

q · · ·χmr

r . (125)

Clearly, the complexity of these relations increases with the degree of the polynomials χλ in
the last sum. Alternatively, we could apply equation (110) to the same function F, with the
result

0 =
∫

dµred

(
3
∂J 2(χ)

∂χp

χ
m1
1 · · · χmr

r + 2mpJ 2(χ)χ
m1
1 · · ·χmp−1

p · · ·χmr

r

)
. (126)

These relations are based on the conjecture (108), in contrast to the ‘geometric recursion
relations’ in (125).

For the group SU(3). For this group the recursion relations (125) take the form

(8 + 2m + n)tm+1,n − 6mtm−1,n+1 − 9ntm,n−1 = 0, (127)

(8 + 2n + m)tm,n+1 − 6ntm+1,n−1 − 9mtm−1,n = 0. (128)

Since the moments are symmetric the two identities are equivalent. These ‘geometric
identities’ are much simpler than the ‘non-geometric’ relations (126), which for p = 1
lead to

(18 + 4m)tn,m+2 − (3 + m)tn+2,m+1 − (27 + 18m)tn+1,m + 27mtn,m−1 + 4mtn+3,m−1 = 0.

By symmetry of the coefficients tmn, the relation for p = 2 is again equivalent to this recursion
formula. The difference of both leads to the simpler formula

0 = (4k + 6)t3k+m+3,m + (4k − 6)t3k+m,m+3 + k(27t3k+m,m − 18t3k+m+1,m+1 − t3k+m+2,m+2).

(129)

All recursion relations are compatible with centre symmetry which implies tmn = 0 unless
m = n mod 3. With the moments

t3m,0 = 2(3m)!

m!(m + 1)!(m + 2)!
, t3m+1,1 = 6(3m + 1)!

m!(m + 1)!(m + 3)!
(130)

one can compute all tmn with the recursion relation (127). For example, for m = n, one finds

tmm = 2
m∑

k=0

(
2k

k

)(
m

k

)2 3k2 + 2k + 1 − 2km − m

(k + 1)2(k + 2)(m − k + 1)
. (131)

The moments tmn for small m and n are given in the appendices.

For the group Spin (5). For this group the geometric recursion relations (125) read

(8 + 2m + n)tm+1,n + (4m − 5n)tm,n − 6mtm−1,n − 4mtm−1,n+2 = 0, (132)

(5 + m + n)tm,n+1 − 5mtm−1,n+1 − 2ntm+1,n−1 − 6ntm,n−1 = 0. (133)
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These relations are compatible with centre symmetry which implies that tmn = 0 for odd n.
With the help of the first or second recursion relations, one can determine any tmn given tm,0.
For the first relation we also need t0,n which are just the coefficients in the series expansion of
Z(0, v) in (70). The moments tmn for small m and n can be found in the appendices.

For the group G2. For this exceptional group the recursion relation (125) is more involved,

0 = 2mtm−1,n+1 − (12 + 2m + 3n)tm+1,n + (8m − 7n)tm,n

+ 14mtm−1,n + 7ntm+2,n−1 + 8ntm+1,n−1 − 7ntm,n−1, (134)

0 = (24 + 3m + 6n)tm,n+1 + 7mtm−1,n+1 − (7m − 12n)tm+1,n − (8m − 4n)tm,n

+ 7mtm−1,n − 6ntm+3,n−1 − 10ntm+2,n−1 + 22ntm+1,n−1 − 14ntm,n−1. (135)

For example, one can calculate all tmn from tm,0 and tm,1. The former ones are just the
coefficients gm in (90). The moments tmn for small m and n are given in the appendices.

8. Conclusions

In this paper, we have derived two kinds of Ward identities for the generating functions for
integrals over arbitrary polynomials of fundamental characters. One is a consequence of the
fact that a left derivative of any function on the Lie group integrates to zero with the full Haar
measure. For a convenient choice of this function, this left derivative is a class function so that
the vanishing of the integral reduces to an identity on the maximal Abelian torus. The other
Ward identity derives from an integral of a total derivative of an arbitrary class function over
a certain domain. If one chooses this domain as the region where the Jacobian of the change
of variables from the angles of the maximal Abelian torus to the fundamental characters is
non-negative, one can split powers of the Jacobian from the arbitrary class function so that the
result vanishes on the boundary of this fundamental domain. This, however, leads to ultimately
more complicated differential equations for the generating functions than the first, geometric,
approach. Both furnish generalizations and structural clarifications of identities used in the
case of SU(3) in an earlier publication [17] by one of the authors. In this paper, they have
been applied to all simple compact simply connected Lie groups of rank 2. Furthermore, they
have been used to prove several conjectures in the literature concerning explicit solutions for
SU(3) and SU(4); beyond that, we derived recursion relations determining all integrals over
polynomials of fundamental characters for the above groups.

The derivation of the second kind of Ward identities is based on a conjecture concerning
the factorization of the reduced Haar measure density ρred into the square of this Jacobian.
This conjecture has been checked explicitly for several cases under consideration, but so far
it lacks a general proof. It might be interesting to clarify this issue from a group-theoretical
point of view.

Another obvious open question is the equivalence of our two approaches. Since both
encode information determining the same generating functions it ultimately should be possible
to derive one from the other. Perhaps with a deeper insight into the group-theoretical
connection between the approaches it might be possible to obtain even simpler identities
which might be of use, e.g., in lattice gauge theories or random matrix models. From a
mathematical point of view they answer the question how many invariants there are in a given
tensor product of fundamental representations.

We found it surprising to note that the generating function for powers of the sum of
characters of only the defining and its complex conjugate representation for SU(2) and SU(4)

can be expressed in terms of appropriate generalized hypergeometric functions. One might
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speculate that this generalizes to higher rank SU(2n) as well. Apart from that, this fact
for SU(4) leads to a hitherto unknown relation (104) between generalized hypergeometric
functions and Bessel functions. Finally, one might note the remarkable fact that all Ward
identities (of the first kind), at least for the Lie groups of rank 2, reduce to parabolic differential
equations on the locus where their families of characteristics coincide. This allows for a
recursive integration starting from a solution on this locus.
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Appendix A. Generating function for SU (3)

In this section, we derive an analytic solution to equation (48). By invariance of the Haar
measure, dµ(g) = dµ(g−1), we expect ZSU(3) to be a symmetric function of u and v. Thus,
our objective is to solve (48) and (49) with the symmetry ZSU(3)(u, v) = ZSU(3)(v, u) and
initial condition ZSU(3)(0, 0) = 1. From (23), we know that

ZSU(3)(0, v) =
∞∑

n=0

2

n!(n + 1)!(n + 2)!
v3n.

Multiplying (48) by u and (49) by v, the difference of the resulting equations reads(
u2∂2

u − v2∂2
v + 4(u∂u − v∂v) − 3(u2∂v − v2∂u)

)
ZSU(3) = 0. (A.1)

In principle, it is possible to find a recursive solution analogously to (71) and (91) starting
from a solution on the locus where the families of characteristics of the differential equation
coincide (here on the u- and the v-axis), where the differential system turns out to be parabolic.
However, in the case of SU(3) we are able to give a closed expression of the solution which
allows for an easier computation of the moments (9).

Centre symmetry (50) as well as the symmetry of ZSU(3) in its two arguments suggests to
introduce new coordinates x = uv and y = u3 + v3. As a function of these variables, ZSU(3)

has to satisfy (
3y∂2

y + 6∂y + 2x∂x∂y − ∂x

)
ZSU(3) = 0, (A.2)

which can easily be solved by a power series expansion,

ZSU(3)(x, y) =
∞∑

m,n=0

amnx
myn (A.3)

with recursion relation

(3n + 3 + 2m)namn = (m + 1)am+1,n−1. (A.4)

The solution to (A.3) and (A.4) with the condition

ZSU(3)(x = 0, y) =
∞∑

n=0

2

n!(n + 1)!(n + 2)!)
yn ≡

∞∑
n=0

a0ny
n (A.5)
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is given by

ZSU(3)(u, v) =
∞∑

m,n=0

2

n!(m + n + 1)!(m + n + 2)!

(
3(m + n + 1)

m

)
(uv)m

(
u3 + v3

)n
. (A.6)

This solution also satisfies the original differential equations (48) and (49). It encodes
information about how many invariants there are in the tensor product 3⊗p ⊗ 3̄⊗q of SU(3)

representations. General results for integrals over SU(3) matrix elements can be found
in [12].

Appendix B. Tables of moments for the rank 2 groups

With the recursion relations (127), (128), (132), (133), (134) and (135), we determined the
moments

tmn =
∫

G

dµred(g)χm
[1,0](g)χn

[0,1](g), (B.1)

for the groups with rank 2 for small m and n. Here χ[1,0] and χ[0,1] are the characters of the
fundamental representations with highest weights µ1 ≡ [1, 0] and µ2 ≡ [0, 1].

For SU(3) the lowest moments of χm
3 χn

3̄ are

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 1 0 0 5 0 0 42 0
1 0 1 0 0 3 0 0 21 0 0 210
2 0 0 2 0 0 11 0 0 98 0 0
3 1 0 0 6 0 0 47 0 0 498 0
4 0 3 0 0 23 0 0 225 0 0 2709
5 0 0 11 0 0 103 0 0 1173 0 0
6 5 0 0 47 0 0 513 0 0 6529 0
7 0 21 0 0 225 0 0 2761 0 0 38265
8 0 0 98 0 0 1173 0 0 15767 0 0
9 42 0 0 498 0 0 6529 0 0 94359 0
10 0 210 0 0 2709 0 0 38265 0 0 586590

For Spin (5) the lowest moments of χm
5 χn

4 are

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 0 1 0 3 0 14 0 84 0 594
1 0 0 1 0 5 0 30 0 210 0 1650
2 1 0 2 0 11 0 75 0 580 0 4917
3 0 0 4 0 27 0 205 0 1714 0 15435
4 3 0 10 0 73 0 600 0 5338 0 50506
5 1 0 26 0 211 0 1852 0 17342 0 171022
6 15 0 75 0 645 0 5970 0 58350 0 596085
7 15 0 225 0 2061 0 19950 0 202230 0 2129719
8 105 0 715 0 6837 0 68730 0 718928 0 7774600
9 190 0 2347 0 23403 0 243050 0 2612796 0 28922112
10 945 0 7990 0 82301 0 879204 0 9681144 0 109404729

Both tables nicely display the constraints from centre symmetry.
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For G2 the lowest moments of χm
7 χn

14 are

m\n 0 1 2 3 4 5 6 7 8
0 1 0 1 1 5 16 80 436 2786

1 0 0 0 1 6 40 260 1785 12852

2 1 1 3 10 45 236 1421 9444 67852

3 1 2 7 32 170 1016 6637 46656 348553

4 4 9 33 151 817 4984 33357 240181 1835171

5 10 30 126 641 3728 23986 167080 1241285 9727650

6 35 120 545 2932 17827 118945 854135 6511050 52159514

7 120 476 2359 13517 86171 596686 4415055 34500369 282217558

8 455 2002 10626 64078 425194 3041241 23115050 184754906 1540766892
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